Теория биохимической эволюции. Презентация - биохимическая эволюция. в научной картине мира»

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Российский университет дружбы народов

Институт иностранных языков

Направление: «Лингвистика»

Профиль обучения: «Перевод и переводоведение»

Реферат

По дисциплине: «Концепции современного естествознания»

На тему: «Теория биохимической эволюции»

Выполнила: студентка 1 курса, гр. ЛДп-111

Рустамова Сарья

Преподаватель: Мраченко Екатерина Аркадьевна

Москва, 2015

Теория биохимической эволюции. Гипотеза А. И. Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни пробионтов на пути к живым организмам.

Коацерваты - это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот.

Исследование факторов, путей и закономерностей этого процесса составляет задачу одного из основных разделов антропологии учения об антропогенезе. К главным проблемам антропогенеза относятся место прародина и время появления древнейших людей непосредственные предки человека основные стадии, движущие силы, на различных его этапах соотношение эволюции физического типа человека с историческим прогрессом его культуры, развитием первобытного общества и речи. Решение коренных и частных проблем антропогенеза осуществляется с помощью данных антропологии особенно палеоантропологии и близких наук эволюционной морфологии и эмбриологии, приматологии, палеонтологии приматов, психологии и физиологии, геологии палеогена, неогена и антропогена, археологии палеолита, этнографии и лингвистики. Антропогенез как единый процесс эволюционного становления человека и исторического формирования общества может быть разделены на стадии, смена которых была связана с наиболее значительными качественными преобразованиями в трудовой деятельности человека, в его морфологии и сознании, в структуре социальной организации.

Стадиальный подход к проблеме антропогенеза крупная заслуга ученых антропологов, археологов, историков первобытного общества, философов. Большинство исследователей выделяет в антропогенезе три стадии - антропоидные предки человека высокоразвитые двуногие приматы, систематически пользовавшиеся в качестве орудий естественными предметами палками, камнями, обломками костей животных - древнейшие и древние люди архантропы и палеоантропы, с которыми связано появление искусственно изготовленных орудий труда, их усложнение до известных пределов, начальная форма общественной организации - люди современного физического строения неоантропы, начало этой стадии относится к эпохе позднего палеолита. Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере богатой кислородом.

В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот “первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:

“Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время. Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты). Самое трудное для этой теории - объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.

опарин антропогенез белковый коллоидный

Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы водной фазы, и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной

среды -процесс, называемый коацервацией от лат. coacervus - сгусток или куча. Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава бульона в разных местах вело к различиям в химическом составе коацерватов и поставляло сырье для биохимического естественного отбора.Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов сложные углеводороды, что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность.

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Около 5 млрд лет т.п. -- возникновение Земли как небесного тела; температура поверхности -- 4000-8000°С

Около 4 млрд лет т.н. - формирование земной коры и первичной атмосферы

При температуре 1000°С -- в первичной атмосфере начинается синтез простых органических молекул

Рис. 2.4.1.1. Основные этапы химической эволюции

Температура первичной атмосферы ниже 100°С -- формирование первичного океана.

Синтез сложных органических молекул -- биополимеров из простых органических молекул:

§ простые органические молекулы -- мономеры

§ сложные органические молекулы -- биополимеры

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.

Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.

Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество -- мочевину из неорганическою -- циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.

В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН 4 , аммиака NH, и паров воды Н 2 0 (рис. 2.4.1.2). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены б-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.

Рис. 2.4.1.2. Установка С. Миллера

В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, -- космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.

Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.

Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный «первичный бульон». По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул -- мономеров сложных органических молекул -- биополимеров (см. рис. 2.4.1.1).

Однако процессы полимеризации отдельных нуклеогидов, аминокислот и Сахаров -- это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды).

Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Несмотря на то что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы -- ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты -- АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ -- это процесс непрерывного взаимодействия важнейших биополимеров живой клетки -- белков и нуклеиновых кислот.

Белки -- это «молекулы-рабочие», «молекулы-инженеры» живой клетки. Характеризуя их роль в обмене веществ, биохимики часто используют такие образные выражения, как «белок работает», «фермент ведет реакцию».

Важнейшая функция белков - каталитическая . Как известно, катализаторы -- это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят.

Бачки-катализаторы называются ферментами. Ферменты в согни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.

Нуклеиновые кислоты -- это «молекулы-компьютеры», молекулы -- хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.

Таким образом, тайна зарождения жизни -- это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни -- белки или нуклеиновые кислоты?

Ученые полагают, что несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми «живыми» молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).

В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды -- молекулы РНК. На исходных поли- нуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-ко- пии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.

Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать «естественным отбором» на уровне молекул. При самокопировании (самосборке) молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.

Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее «размножаются»).

На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов -- пептидов. Вокруг молекулы РНК образуется белковый «чехол».

Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы «вырезаются» и «выбрасываются»), а оставшиеся участки РНК, кодирующие белковые фрагменты, «срастаются», т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 2.4.1.3).

По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).

Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.

В процессе дальнейшего развития, благодаря появлению белка с функциями фермента -- обратной транскриптазы, на одно- цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2" положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.

Рис. 2.4.1.3. Гипотеза возникновения взаимодействия белков и нуклеиновых кислот: а) в процессе самокопирования РНК накапливаются ошибки (1 -- нуклеотиды, соответствующие исходной РНК; 2 -- нуклеотиды, не соответствующие исходной РНК, -- ошибки в копировании); б) на часть молекулы РНК за счет ее физико-химических свойств «налипают» аминокислоты (3 -- молекула РНК; 4 -- аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы -- пептиды.

В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся «срастаются» в единую молекулу, кодирующую крупный белок.

В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрированного раствора -- коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) -- рис. 2.4.1.4.

Коацерватные капли обладают некоторым подобием обмена веществ: йод воздействием чисто физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, но достижении определенного размера начинают «размножаться», отпочковывая маленькие капельки, которые, в свою очередь, могут расти и «почковаться».

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липидов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема -- рис. 2.4.1.4).

Процессы возникновения коацерватных капель, их роста и «почкования», а также «одевания» их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.

Для коацерватных капель также существует процесс «естественного отбора», при котором в растворе сохраняются наиболее стабильные капли.

Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого -- способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого «свободноживущего гена», а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.

Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.

Размещено на Allbest.ru

...

Подобные документы

    Гипотеза Опарина о постепенном возникновении жизни на Земле из неорганических веществ путем длительной абиогенной (небиологической) молекулярной эволюции. Роль появления коацерватов и химической эволюции в развитии клетки и ходе биологической эволюции.

    статья , добавлен 18.05.2009

    Проблема происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни. Этапы химической и предбиологической эволюции на пути к жизни. Гипотеза о роли малых молекул в первичном зарождении белково-нуклеиновых систем.

    реферат , добавлен 02.01.2008

    Первая теория о жизни на земле, которую создал советский биохимик А.И. Опарин, ее содержание. Этапы развития жизни на Земле по гипотезе Опарина-Холдейна. Искусственный синтез биологических мономеров. Мировоззренческое значение эволюционного учения.

    презентация , добавлен 13.03.2017

    Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.

    реферат , добавлен 23.03.2012

    История формирования эмпирического знания. Математика, астрономия египтян и вавилонян. Древние китайские сочинения по точным наукам, зарождение письменности. Открытие понятия энтропии, принцип возрастания. Теория Опарина о происхождении жизни на Земле.

    контрольная работа , добавлен 09.05.2010

    Характеристика основных гипотез о происхождении жизни: креационизм, абиогенез, гипотеза стационарного состояния (этернизм), панспермия, биохимическая эволюция (гипотеза Опарина). Спорные доказательства абиогенного механизма возникновения жизни (РНК-мира).

    презентация , добавлен 08.06.2011

    Краткое описание теории Опарина о самозарождении жизни под воздействием физико-химических процессов, протекающих в условиях первобытной Земли. Гипотеза образования коацерватов. Условия и этапы возникновения белковых тел. Искусственный синтез аминокислот.

    презентация , добавлен 18.04.2016

    Вопрос о возникновении жизни на Земле - борьба религии и науки, идеализма и материализма. Проблема отличия живого от неживого. Современное двуединое понятие первобытного бульона и самозарождения жизни - теория Опарина-Холдейна о происхождении жизни.

    реферат , добавлен 09.05.2009

    Рассмотрение гипотезы Опарина о возникновении жизни на Земле. Ознакомление с теориями происхождения и становления человека как биологического вида. Изучение свойств, границ, условий и плотности жизни в биосфере, круговорота веществ и энергии в ней.

Проблема возникновения жизни на Земле и возможность существования ее внеземных форм является фундаментальной не только для биологии, но и для естествознания в целом. Среди основных гипотез, пытающихся объяснить возникновение жизни, наиболее известны следующие:

    креационизм - жизнь была создана сверхъестественным существом в определенное время;

    происхождение жизни из неживой природы - жизнь возникала самопроизвольно из неживого вещества;

    панспермия - жизнь занесена на нашу планету извне;

    биохимическая эволюция - жизнь возникла в ходе закономерного, самоусложняющегося развития природы в результате процессов, подчиняющихся химическим и физическим законам.

Креационизм. Согласно креационизму жизнь возникла в результате какого-то сверхъестественного события в прошлом. Эта концепция признает неизменность видов живых существ, е е придерживаются последователи почти всех наиболее распространенных религиозных учений.

Происхождение жизни из неживой природы. Эта гипотеза была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму. Согласно гипотезе жизнь возникла спонтанно из неживого вещества под воздействием некоего «активного начала». Приверженцами гипотезы о самопроизвольном зарождении живых организмов из неживой природы были Аристотель, Галилей, Декарт, Гегель, Ламарк.

Панспермия (от греч. pan - все и sperma - семя). В XIX веке была выдвинута гипотеза вечного, повсеместного существования жизни в Космосе в виде «зародышей жизни», и ее космического происхождения на Земле. Эта гипотеза, как и гипотеза о самозарождении жизни, не предлагает никакого механизма для объяснения первичного возникновения жизни, поэтому ее нельзя считать теорией возникновения жизни как таковой. Гипотеза панспермии утверждает, что жизнь могла возникнуть один или несколько раз в разное время и в разных частях Вселенной. Для обоснования этой гипотезы используется информация о многократных появлениях НЛО, наскальные изображения объектов, похожих на ракеты и «космонавтов», а также сообщения о встречах с инопланетянами. В начале XX века идею панспермии развивал русский ученый В.И.Вернадский.

Биохимическая эволюция. В современной науке принята гипотеза абиогенного (небиологического) происхождения жизни в результате процессов абиогенеза. Абиогенез - длительный процесс космической, геологической и химической эволюции. Основоположниками этой гипотезы являются русский ученый А. И. Опарин и английский естествоиспытатель Дж. Холдейн.

Согласно абиогенезу нужны четыре основных условия для появления живого из неживого:

Наличие определенных химических веществ,

Наличие источника энергии,

Отсутствие газообразного кислорода,

Длительное время.

Выделяют три основных этапа абиогенеза.

Первый этап связан с химической эволюцией . После возникновения (5 млрд. лет назад) Земля представляла собой раскаленный шар. Температура поверхности в начальный период была 4000-8000°С, и по мере остывания тяжелые химические элементы перемещались к центру Земли, а легкие скапливались на поверхности. Углерод и более тугоплавкие металлы конденсировались и впоследствии стали основой земной коры. Химические элементы взаимодействовали друг с другом и образовали молекулы неорганических веществ (воды, азота, углекислого газа, аммиака, метана, сероводорода). По мере остывания происходила конденсация водяных паров, что привело к формированию водоемов, в которых растворялись различные неорганические соединения.

Второй этап возникновения жизни связан с появлением белковых веществ (биополимеров) . Земная жизнь имеет углеродную основу (см. химию). А. И. Опарин в своей работе «Происхождение жизни» (1924 г) высказал мнение, что органические вещества - основа жизни - могли возникнуть из более простых углеродных соединений при их концентрации в первичном океане. Подобную идею в 1927 году предложил английский естествоиспытатель Дж. Холдейн. Источником энергии для реакции синтеза органических веществ были солнечная радиация и тепло Земли. Излучение беспрепятственно проникало на Землю, поскольку озонового слоя в первичной атмосфере еще не было. В первичной атмосфере не было и кислорода. Кислород, будучи сильным окислителем, моментально разрушил бы органические соединения, поэтому его отсутствие облегчало синтез биополимеров.

В 1953 г. Стэнли Миллер (США) предпринял попытку экспериментальной проверки гипотезы Опарина–Холдейна. В установке он смоделировал условия, предположительно существовавшие на ранней Земле. Смесь газов (водяные пары, метан, аммиак и водород) в течение недели подвергали воздействию электрических разрядов высокого напряжения, после чего в «ловушке» было обнаружено 15 аминокислот. Позднее в подобных экспериментах были синтезированы простые нуклеиновые кислоты.

Органические вещества, накапливаясь в океане, образовали «первичный бульон», затем они стали объединяться в студнеобразные сгустки - коацерваты (от лат. coacervus - сгусток). За счет физико-химических процессов, происходивших в «первичном бульоне», коацерватные капли увеличивались в размерах, получили способность делиться на части, поглощать вещества из окружающей среды, т.е. приобрели признаки роста, размножения и обмена веществ. Однако коацерваты не были способны к самовоспроизводству и саморегуляции.

Третий этап возникновения жизни связан с формированием у органических соединений способности к самовоспроизводству . Началом жизни следует считать возникновение стабильной самовоспроизводящейся органической системы с постоянной последовательностью нуклеотидов. Поглощение коацерватами металлов привело к образованию ферментов, ускоряющих биохимические процессы, а появление границ между коацерватами и окружающей средой (полупроницаемых мембран) обеспечило стабильность коацерватов.

Возникновение жизни объясняется взаимодействием нуклеиновых кислот (ДНК) и белков. В результате включения их в коацерват могла возникнуть примитивная клетка, способная к росту и размножению. Нуклеиновые кислоты являются носителями генетической информации, а белки служат катализаторами химических реакций, протекающих внутри коацервата. Таким образом, сложная открытая органическая система приобрела основные признаки живого – способность к самоорганизации, саморегуляции и самовоспроизводству, и стала прообразом единицы живого - клетки.

Биологическая эволюция . Биологическая эволюция начинается с возникновения клеточной организации и идет по пути совершенствования строения и функций клетки, образования многоклеточных организмов, разделения живого на царства растений, животных, грибов с последующей их дифференциацией на виды.

Жизнь на Земле возникла 3,5 млрд. лет назад. В это время появились первые живые клетки – прокариоты. Прокариоты – это безъядерные клетки. Они представлены бактериями и сине-зелеными водорослями. Прокариоты могли жить без кислорода и в качестве питательных веществ использовали вещества «первичного бульона». «Первичный бульон» истощался, и в процессе эволюции преимущества получали те клетки, которые могли использовать солнечный свет для самостоятельного синтеза необходимых веществ (фотосинтез). Так появились автотрофы, а в первичную атмосферу стал поступать кислород.

1,5 - 2 млрд. лет назад появляются эукариоты – организмы, клетки которых содержат ядро. Примерно 1 млрд. лет назад произошло разделение эукариотов на растительные и животные клетки.

Следующим существенным шагом в биологической эволюции стало появление 900 млн. лет назад полового размножения . Половое размножение значительно повышает видовое разнообразие, приспособляемость и способствует ускорению эволюции.

Появление первых многоклеточных организмов произошло примерно 800 млн. лет назад. У них развиваются органы и ткани, происходит дифференциация их функций.

500 – 440 млн. лет назад появляются первые плотоядные и позвоночные, а примерно 410 млн. лет назад живые организмы выходят на сушу.

Важным моментом биологической эволюции является появление и развитие нервной системы и мозга, что позволило организмам увеличить разнообразие реакций на воздействие окружающей среды.

В условиях похолодания в начале кайнозоя значительное эволюционное преимущество получили теплокровные животные.

Примерно 8 млн. лет назад начали формироваться современные семейства млекопитающих. В этот период появились разнообразные виды приматов и тем самым сложились предпосылки для начала антропогенеза. Антропогенез - часть биологической эволюции, которая привела к появлению вида Homo sapiens.

2 – 3 млн. лет назад началось очередное вымирание лесов. Одна из групп антропоидных обезьян постепенно стала осваивать открытые пространства. Предположительно от этих обезьян произошли люди.

Сейчас жизнь на земле представлена клеточными и доклеточными формами. Доклеточные организмы - это вирусы и фаги, клеточные разделяют на четыре царства: микроорганизмы, грибы, растения и животные.

Теорий возникновения протобиополимеров – основы жизни на Земле несколько. Рассмотрим наиболее важнейшие из них.

Теория Панспермии.

Данной точки зрения придерживались Аррениус, Гельмгольц, Берг, Вернадский, микробиолог Заварзин.

Согласно данной точки зрения жизнь зародилась в космосе и первые живые существа были привнесены на Землю из космоса вместе с космической пылью, метеоритами. Таким образом, жизнь на Земле существует столько, сколько существует сама планета.

Однако встает вопрос, где появилась первая жизнь? По мнению микробиологов, жизнь могла возникнуть в космосе, в пределах Солнечной системы (космо-химическая теория). Эта химическая, а затем биологическая эволюция происходила до образования Земли.

Доказательством является сравнительный анализ вещества космоса и Земли: основными химическими элементами везде являются О, Н, С, N.

Концентрация вещества в космосе очень мала, поэтому, вероятно, первые элементы жизни связаны с космической пылью, которая имеет следующее строение:

Под воздействием ультрафиолетовых лучей, которых в космосе очень много, могли протекать химические и биологические процессы. В метеоритах найдены углеводороды: пурины, пиримидины, аминокислоты. Впервые органические вещества в метеоритах выделены Берцелиусом. Жизнь на поверхность Земли могли доставлять и кометы. Химический состав комет не отрицает это. Органические вещества в «замороженном» состоянии в метеоритах и кометах могли оставаться неограниченно долгое время и, попав на Землю, при благоприятных условиях могли продолжить развитие.

Аргументы против данной теории:

· длительное пребывание в холоде должно быть губительно, но эксперименты подтверждают, что зародыши простейших микроорганизмов в течение 6 мес. переживают температуру –200оС;

· ультрафиолетовые лучи губительны для в сего живого, но в отсутствии кислорода сложные органические соединения могут существовать не разрушаясь при жестком ультрафиолетовом излучении;

· прохождение метеоритов через атмосферу вызывает значительное повышение температуры, метеориты оплавляются, но есть данные, что микроорганизмы могут переносить высокие температуры и они вполне могли сохраниться внутри метеоритов.

Таким образом, нет фактов, доказывающих полную несостоятельность этой теории.

Термическая теория .

Реакции конденсации, которые привели бы к образованию полимеров из низкомолекулярных предшественников, могут осуществляться путем нагревания. Наиболее хорошо изучен синтез полипептидов. Идея термического синтеза полипептидов принадлежит американскому ученому С. Фоксу, который длительно изучал возможности образования полипептидов в условиях, существовавших на первобытной Земле.

Если смесь аминокислот нагреть до 180-2000 С при нормальных атмосферных условиях или в инертной среде, то образуются продукты расщепления, небольшие олигомеры, в которых мономеры соединены пептидными связями, а также малые количества полипептидов. Полипептиды, полученные термическим путем из аминокислот, – протеиноиды – проявляют многие специфические свойства биополимеров протеинового типа. Однако, более сложные структуры получить не удалось. Не выдвинуты обоснованные теоретические пути данного процесса.

Низкотемпературная теория.

Холодная плазма широко распространена в природе. Некоторые ученые считают что 99% Вселенной находятся в состоянии холодной плазмы. На современной Земле она представлена в виде молний, северных сияний, ионосферы. На абиотической Земле этот вид энергии был способен превращать молекулы в свободные радикалы, активные в химическом отношении. В результате экспериментов с холодной плазмой авторами теории были получены отдельные мономеры, полимеры пептидного типа и липиды.

Теория адсорбции .

Основным контраргументом в спорах об абиогенном возникновении полимерных структур является концентрационный барьер и недостаток энергии для конденсации мономеров в разбавленных растворах. Действительно, по некоторым оценкам концентрация органических молекул в «первичном бульоне» составляла около 1%, что не могло обеспечить протекания реакций полимеризации или поликонденсации в быстрые сроки, как это произошло на Земле по оценкам некоторых ученых. Одно из решений этого вопроса, связанное с преодолеванием концентрационного барьера, было предложено Дж. Д. Берналом , считавшим, что концентрирование разбавленных растворов происходит путем «адсорбции в пресноводных или морских отложениях очень тонких глин».

В результате взаимодействия веществ в процессе адсорбции некоторые связи ослабляются и рвутся, другие возникают, что приводит к разрушению одних и образованию других веществ.

Коацерватная теория .

В 1924г. Выходит в свет книга А.И. Опарина «Происхождение жизни», в которой он выдвигает гипотезу, что происхождение жизни на земле есть результат длительного эволюционного процесса на самой Земле. Сейчас зарождение жизни не возможно, т.к. все экологические ниши заняты и есть кислород – сильный окислитель.

В 1929г. Выходит статья Дж. Холдейна, где он независимо от Опарина приходит к таким же результатам. Но приоритет открытия Опарина однозначен.

Опарин считает, что жизнь на Земле могла возникнуть абиогенным путем. Первые живые организмы были гетеротрофами. Это могло произойти при наличии определенных химических веществ, источников энергии, отсутствии газообразного кислорода и при наличии безгранично длительного времени.

Вероятность самозарождения жизни по Опарину 1/1000 случаев в год, но времени было достаточно от возникновения Земли до появления первых прокариотов (1 млрд лет).

Опарин выделил 4 этапа возникновения жизни на Земле.

1 этап. Образование органических веществ.

Вначале масса Земли была раскалена, постепенно она остывала. В это время углерод соединялся с металлами с образованием карбидов:

С + Ме (Ni, Fe) =карбиды (обнаружены в метеоритах).

В первичной атмосфере Земли были C, H, N.

O2 + 2H2 = 2 H2O

Спектральные исследования показали, что эти вещества присутствуют на солнце и других звездах. Свободный кислород отсутствовал. По мере остывания пары воды могли конденсироваться с образованием первичных водоемов.

Источниками энергии для первичной химической эволюции могли служить:

· распад К40;

· ультрафиолетовое излучение;

· вулканизм;

· удары метеоритов;

· молнии.

В водной среде под воздействием этих видов энергии могли появиться спирты, альдегиды, кислоты.

Гипотеза Опарина вызвала много споров и научных исследований.

В 1953г. Миллер сконструировал специальную установку и провел следующие эксперименты. Через смесь газов CH4, NH3, H2O и H2 он пропускал электрический ток. К концу недели были получены аминокислоты аланин и глутамин.

Оро провел подобный эксперимент, используя в качестве энергии ультрафиолетовое излучение при высокой температуре и получил урацил, рибозу и дезоксирибозу.

Теорию Опарина подтверждают и палеонтологические данные. Первые органические молекулы найдены в слоях, соответствующих возрасту 3,8 млрд лет назад.

2 этап. Полимеризация мономеров.

Доказать полимеризацию в естественных условиях трудно, т.к. полимеры легко разрушаются. Т.е. реакции полимеризации и поликонденсации могли идти только при мягких условиях реакции при наличии катализаторов. Ими могли быть цианиды.

Данные реакции по предложению Дж. Д. Бернала могли осуществляться на границе земля – вода, на скоплениях глин, которые являются прекрасными адсорбентами. Многие виды глин эффективно адсорбируют сахара, азотистые основания, кислоты. При высокой концентрации потенциальных мономеров при наличии внешней энергии могли протекать процессы полимеризации.

3 этап. Появление коацерватов.

Молекулы первых органических соединений, в т.ч. и белков, находились в растворах. Они образовывали коллоидный раствор. При смешивании различных коллоидных растворов возникали фазово-обособленные органические системы – капли белков, отличающиеся друг от друга – коацерватные капли, имеющие некую структурную оболочку, образованную определенным образом ориентированными молекулами. Эта оболочка отделяет каплю от внешней среды, превращая ее в дискретную единицу, содержащую набор химических веществ, отличный от внешней среды. Через эту оболочку возможен обмен веществ между коацерватом и внешней средой по типу открытых систем. Внутри коацерватов под действием катализаторов могла происходить самосборка полимерных молекул в многомолекулярные фазово-обособленные образования – видимые под оптическим микроскопом капли. В них сосредотачивается большинство полимерных молекул, тогда как окружающая среда почти их лишена. Коацерваты могут объединяться, образуя более сложные структуры, поглощать меньшие, делиться на дочерние образования. Таким образом, возникает простейший метаболизм. Вещество входит в каплю, полимеризуется, обуславливая рост системы, а при его распаде продукты этого распада выходят во внешнюю среду, где их раньше не было.

Важно то, что в зависимость от совершенства внутренней организации капель одни из них могут расти быстро, тогда как другие, находясь в той же среде, замедлены в своем росте или подвергаются распаду. Таким образом, на модели коацерватных капель А.И Опарину и его сотрудникам удалось экспериментально показать предбиологический отбор, т.е. зачатки естественного отбора, который в дальнейшем явился движущей силой всего эволюционного процесса.

Исследования Опарина подтверждены другими учеными. Это «пузырьки» Гольдейкера, «микросферы» Фокса, «джейвану» Бахадура. «пробионты» Эгами и многие другие.

4 этап. Возникновение матричного синтеза.

Грань, отделяющая преджизнь от жизни – возникновение матричного синтеза. До этого момента существовали индивидуумы, с появлением матричного синтеза можно говорить о популяциях.

Синтез белков претерпевал эволюционные изменения.

Изначально сборка белков шла на РНК, находящихся в цитоплазме клеток. Это самый простой способ, но при нем не гарантировалось равномерное деление информации между дочерними клетками, т.е. часть признаков могла исчезнуть из популяции.

Более прогрессивный способ возник с появлением ДНК. ДНК были более устойчивыми молекулами, поскольку имели двуцепочечное строение. На первом этапе РНК и ДНК конкурировали и возможно эволюция пошла по дивергентному пути. ДНК стала специализироваться на самовоспроизведении, РНК – синтезе белков. ДНК обосновалась в ядре, РНК – в цитоплазме. Образовались 2 системы синтеза:

– синтез полипептидов – относительно не точный;

– синтез белков – очень точный.

Постепенно возникла система генетического кода, когда триплет нуклеотидов кодировал аминокислоту. С появлением примитивного генетического аппарата обладавшие им протоклетки смогли передавать всем своим потомкам способность синтезировать специфические полипептиды. Образующиеся из них линии давали семейства родственных протоклеток с наследуемыми свойствами, которые подвергались естественному отбору.

Первые живые организмы были гетеротрофными и использовали готовые органические вещества первичного бульона. Автотрофы скорее всего произошли от гетеротрофов на следующем этапе эволюции. Причиной явилось уменьшение количества готовых органических веществ в первичном бульоне, т.к. увеличилось количество протобионтов, а позднее первых живых организмов. Это обострило конкуренцию преимущество стали иметь живые организмы, использующие альтернативные источники энергии. Таким неисчерпаемым источником энергии стал солнечный свет. Сначала это была ультрафиолетовая часть спектра, позднее, с появлением кислорода, в атмосфере начал формироваться озоновый экран – препятствие для ультрафиолетового излучения и преимущество получили организмы, имеющие катализаторы, позволяющие использовать видимую часть спектра для осуществления окислительно-восстановительных реакций. Возник фотосинтез. Это привело к еще большему увеличению содержания кислорода в атмосфере и возникновению процесса дыхания. Накопление кислорода в атмосфере также привело к окончанию абиогенного синтеза.

Долгое время ученые со всех уголков мира вели ожесточенные дискуссии и споры по поводу того, как же все-таки возникла жизнь на земле. Кто-то говорил о креационизме, кто-то о панспермии, кто-то придерживался теории самозарождения или гипотезы стационарного состояния, однако лишь в 1924 году советский биохимик А.И. Опалов предложил знаменитую биохимическую теорию. Теория «Возникновения жизни. 1936» устроила большую часть ученых и сейчас она является официально признанной.

Формулировка теории биохимической эволюции

По данным теории биохимической эволюции, формирование жизни на Земле протекало в 3 этапа , и развитию усложненных форм живых организмов предшествовал очень долгий исторический процесс по взаимодействию и построению из органических молекул сложных соединений и образование уже из них различных форм жизни.

Три этапа формирования жизни на Земле:

  1. Первым этапом был абиогенный синтез органических веществ . Это значит, что органические вещества образовались под воздействием внешней среды, наиболее важным фактором, при этом является ультрафиолетовое излучение, и из различных неорганических соединений.
  2. Вторым этапом было формирование биополимеров их органических соединений.
  3. И, последнее, формирование мембранных структур и самовоспроизведение.

Плюсы биохимической теории

  • Одним из главных достоинств теории Опарина-Холдейна является ее последовательность , в ней нет моментов, когда произошло «что-то» и возникла жизнь:
    • Как всем известно, атмосфера первоначально состояла из легких газов, таких как гелий и водород, а со временем остывания земной коры, состав атмосферы поменялся. Газы стали более тяжелыми: водяной пар, аммиак, метан и углекислый газ. Когда земная кора остыла ниже 100 ºС, водяной пар сконденсировался и образовал мировой океан. По теории Опарина, именно в этот момент, в земных океанах, еще полных простых химических соединений, под влиянием вулканического тепла, ультрафиолета и многих других факторов окружающей среды начался процесс образования более сложных органических соединений, а затем биополимеров и прочих компонентов живых организмов.
    • В 1929 году теорию Опарина дополнил английский ученый Холдейн, который предположил, что первенство, то есть главную роль, в образовании жизни принадлежит не белкам, а нуклеиновым кислотам, входящим в состав ДНК всех живых организмов.
    • На самом деле, главную роль в образовании жизни сыграли не белки или нуклеиновые кислоты по отдельности, а их взаимодействие, благодаря чему у живых организмов проявились такие свойства, как самовоспроизведение, сохранение и передача наследственной информации.
  • Эта теория является общепринятой в научном мире и принимается большинством ученых по всему миру:
    • Огромным преимуществом теории биохимической эволюции является ее распространенность и принятость в научных кругах. Это, конечно, неспроста.
    • В лабораторных условиях были проведены исследования, которые доказали, что теория Опарина-Холдейна является, если не правдой, то наиболее приближенной к правде.
  • Огромным достоинством данной теории является ее проверяемость . В лабораторных условия теория была доказана и рассмотрена от первого до последнего этапа.
    • Стенли Миллер-студен Чикагского университета в 1953 году провел определенные исследования, воспроизведя в стеклянной колбе атмосферу первичной Земли и в течение недели, пропускал электрические разряды. К концу эксперимента в колбе были обнаружены а-аминокислоты, органические кислоты, у-оксимасляная кислота и мочевина. При последующем повторении эксперимента были получены отдельные нуклеотиды и короткие полинуклеотидные цепочки из 5-6 звеньев.
  • В последнее время, благодаря быстро развивающейся науке стало возможным проведение многих исследований, которые позволили бы окончательно доказать или опровергнуть данную теорию.

Теория является почти полностью доказанной, она имеет много сторонников, но что же все-таки смущает некоторых ученых?

Минусы теории Опарина-Холдейна

Кроме весомых плюсов теория имеет достаточно сомнительные недостатки, которые не делают теорию официальной, но считают общепринятой:

  • Например, одним из минусов теории биохимической эволюции является отсутствие объяснения возникновения механизма коацерватов полноценной, сформированной клетки.
  • Отсутствие объяснения появления способности к самовоспроизведению тоже смущает ученых и оставляет вопрос открытым.
  • Помимо этого, есть еще более важный аргумент ставящий теорию под сомнение: момент образования белковых структур имеет очень грубую неточность- как аминокислоты без участия ферментов смогли образовать эти самые белковые структуры? Как образовались первые ферменты? На каком этапе это произошло и что стало толчком к этому?

Все неточности не позволяют раз и навсегда ответить на вопрос возникновения жизни и признать данную теорию единственной верной.

Подведем итоги и дадим прогнозы

Теория биохимической эволюции впервые была сформирована не совсем в таком виде, какой мы знаем ее сейчас, она развивалась, дополнялась, проводились исследования молодых умов и теория двигалась вперед, позже даже приобрела двойную фамилию «Теория биохимической эволюции Опарина-Холдейна» . Это дает нам надежду, что со временем теория будет развита дальше, возможно, получит тройную фамилию и ответит на все вопросы, которые сейчас тревожат современных ученых.

Насколько известно, даже сейчас, в научных кругах, ищутся ответы на все неточности и проводятся все новые и новые исследования по обнаружению и получению ферментов, которые при взаимодействии с аминокислотами образовали бы те самые, первые белковые структуры.

Оглядываясь на бесконечно набирающий темп роста научного развития, можно с уверенностью сказать, что в течении 50 ближайших лет будут даны ответы на самые сложные вопросы образования вселенной, жизни, каждой клетки и каждого живого существа.

Одним из главным препятствий, стоявших в начале XX в. на пути решения проблемы возникновения жизни, было господствовавшее в науке и основанное на повседневном опыте убеждение, что между органическими и неорганическими соединениями не существует никакой взаимосвязи. До середины XX в. многие ученые полагали, что органические соединения могут возникать только в живом организме, биогенно. Именно поэтому их назвали органическими соединениями в противоположность веществам неживой природы - минералам, которые получили название неорганических соединений. Считалось, что природа неорганических веществ совершенно иная, а поэтому возникновение даже простейших организмов из неорганических веществ принципиально невозможно. Однако, после того как из обычных химических элементов было синтезировано первое органическое соединение, представление о двух разных сущностях органических и неорганических веществ оказалось несостоятельным. В результате этого открытия возникли органическая химия и биохимия, изучающие химические процессы в живых организмах.

Кроме того, данное научное открытие позволило создать теорию биохимической эволюции, согласно которой жизнь на Земле возникла в результате физических и химических процессов. Исходную основу этой гипотезы составили данные о сходстве веществ, входящих в состав растений и животных, а также о возможности в лабораторных условиях синтезировать органические вещества, составляющие белок.

Эти открытия легли в основу теории А.И. Опарина, опубликованной в 1924 г. в книге "Происхождение жизни", где была изложена принципиально новая гипотеза происхождения жизни. Он выступил с утверждением, что принцип Реди, вводящий монополию биотического синтеза органических веществ, справедлив лишь для современной эпохи существования нашей планеты. В начале же своего существования, когда Земля была безжизненной, на ней происходили абиотические синтезы углеродистых соединений и их последующая предбиологическая эволюция.

Появление жизни он рассматривал как единый естественный процесс, который состоял из протекавшей в условиях ранней Земли первоначальной химической эволюции, перешедшей постепенно на качественно новый уровень - биохимическую эволюцию. Суть гипотезы сводилась к следующему: зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой. И произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов.

Рассматривая проблему возникновения жизни путем биохимической эволюции, Опарин выделяет три этапа перехода от неживой материи к живой: эволюция биохимический естествознание

  • 1. этап синтеза исходных органических соединений из неорганических веществ в условиях первичной атмосферы ранней Земли;
  • 2. этап формирования в первичных водоемах Земли из накопившихся органических соединений биополимеров, липидов, углеводородов;
  • 3. этап самоорганизации сложных органических соединений, возникновение на их основе и эволюционное совершенствование процессов обмена веществом и воспроизводства органических структур, завершающееся образованием простейшей клетки.

На первом этапе, около 4 млрд. лет назад, когда Земля была безжизненной, на ней происходили абиотический синтез углеродистых соединений и их последующая предбиологическая эволюция. Для этого периода эволюции Земли были характерны многочисленные вулканические извержения с выбросом огромного количества раскаленной лавы. По мере остывания планеты водяные пары, находившиеся в атмосфере, конденсировались и обрушивались на Землю ливнями, образуя огромные водные пространства. Поскольку поверхность Земли оставалась все-таки горячей, вода испарялась, а затем, охлаждаясь в верхних слоях атмосферы, вновь выпадала на поверхность планеты. Эти процессы продолжались многие миллионы лет. Таким образом, в водах первичного океана были растворены различные соли. Кроме того, в него попадали и органические соединения: сахара, аминокислоты, азотистые основания, органические кислоты и т.п., непрерывно образующиеся в атмосфере под действием ультрафиолетового излучения, высокой температуры и активной вулканической деятельности.

Первичный океан, вероятно, содержал в растворенном виде различные органические и неорганические молекулы, попавшие в него из атмосферы и поверхностных слоев Земли. Концентрация органических соединений постоянно увеличивалась, и в конце концов воды океана стали "бульоном" из белковоподобных веществ - пептидов.

На втором этапе, по мере смягчения условий на Земле, под воздействием на химические смеси первичного океана электрических разрядов, тепловой энергии и ультрафиолетовых лучей стало возможным образование сложных органических соединений - биополимеров и нуклеотидов, которые, постепенно объединяясь и усложняясь, превращались в протобионтов. Итогом эволюции сложных органических веществ стало появление коацерватов, или коацерватных капель.

Коацерваты - это комплексы коллоидных частиц, раствор которых разделяется на два слоя: слой, богатый коллоидными частицами, и жидкость, почти свободную от них. Коацерваты обладали способностью поглощать различные вещества, растворенные в водах первичного океана. В результате внутреннее строение коацерватов менялось, что вело или к их распаду, или к накоплению веществ, т.е. к росту и изменению химического состава, повышающего их устойчивость в постоянно меняющихся условиях. Теория биохимической эволюции рассматривает коацерваты как предбиологические системы, представляющие собой группы молекул, окруженные водной оболочкой. Коацерваты оказались способными поглощать из внешней среды различные органические вещества, что обеспечило возможность первичного обмена веществ со средой.

На третьем этапе, как предполагал Опарин, начал действовать естественный отбор. В массе коацерватных капель происходил отбор коацерватов, наиболее устойчивых к данным условиям среды. Процесс отбора шел в течение многих миллионов лет, в результате чего сохранилась только малая часть коацерватов. Однако сохранившиеся коацерватные капли обладали способностью к первичному метаболизму. А обмен веществ - первейшее свойство жизни. Вместе с тем, достигнув определенных размеров, материнская капля могла распадаться на дочерние, которые сохраняли особенности материнской структуры. Таким образом, можно говорить о приобретении коацерватами свойства самовоспроизведения - одного из важнейших признаков жизни. По сути дела, на этой стадии коацерваты превратились в простейшие живые организмы.

Дальнейшая эволюция этих предбиологических структур была возможна только при усложнении обменных и энергетических процессов внутри коацервата. Более прочную изоляцию внутренней среды от внешних воздействий могла обеспечить только мембрана. Вокруг коацерватов, богатых органическими соединениями, возникли слои липидов, отделившие коацерват от окружающей его водной среды. В процессе эволюции липиды трансформировались в наружную мембрану, что значительно повысило жизнеспособность и устойчивость организмов. Появление мембраны предопределило направление дальнейшей химической эволюции по пути все более совершенной саморегуляции вплоть до возникновения первых клеток.

Популярность теории Опарина в научном мире очень велика. Однако большая часть экспериментов, развивших идеи ученого, была проведена только в 1950--1960-е гг. Так, в 1953 г. С. Миллер в ряде экспериментов смоделировал условия, существовавшие на раннем этапе эволюции Земли. В сделанной им установке были синтезированы многие аминокислоты, аденин, простые сахара и другие вещества, имеющие важное биологическое значение. После этого Л. Орджел в сходном эксперименте синтезировал простые нуклеиновые кислоты. Но, несмотря на экспериментальную обоснованность и теоретическую убедительность, теория Опарина имеет как сильные, так и слабые стороны.

Сильной стороной теории является достаточно точное экспериментальное обоснование химической эволюции, согласно которой зарождение жизни является закономерным результатом добиологической эволюции материи. Убедительным аргументом в пользу этой теории является также возможность экспериментальной проверки ее основных положений. Это касается не только лабораторного воспроизведения предполагаемых физико-химических условий первичной Земли, но и коацерватов, имитирующих доклеточных предков и их функциональные особенности.

Слабой стороной теории является невозможность объяснения самого момента скачка от сложных органических соединений к живым организмам, ведь ни в одном из поставленных экспериментов получить жизнь так и не удалось. Кроме того, Опарин допускал возможность самовоспроизведения коацерватов в отсутствие молекулярных систем с функциями генетического кода. Иными словами, без реконструкции эволюции механизма наследственности объяснить процесс скачка от неживого к живому не удается. Поэтому сегодня считается, что решить эту сложнейшую проблему биологии без привлечения концепции открытых каталитических систем, молекулярной биологии, а также кибернетики не получится.