Определение предела функции в точке по гейне. Предел последовательности и функции. Теоремы о пределах. Бесконечно большие функции

Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.

Постоянное число а называется пределом последовательности {x n}, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a - ε < x n < a + ε которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a-ε , a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предела функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное, как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 < x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε

Это определение называют определением предел функции по Коши, или “на языке ε - δ "

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ 0*∞ являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2.

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности,

Теорема 3.

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→a и при этом x и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

(6.15)

Условие (6.15) можно переписать в виде:

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

и непрерывной слева в точке x o, если предел

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода - в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100×(1 +1/10) 10 ≈ 259 (ден. ед.),

100×(1+1/100) 100 ≈ 270 (ден. ед.),

100×(1+1/1000) 1000 ≈271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1 . Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n > N имеет место неравенство |x n -1| < ε

Возьмем любое ε > 0. Так как x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n<ε. Отсюда n>1/ε и, следовательно, за N можно принять целую часть от 1/ε N = E(1/ε). Мы тем самым доказали, что предел .

Пример 3.2. Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n → ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

Пример 3.3 . . Найти .

Решение.

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3.4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:

Пример 3.5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3.6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin (p n) = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.

Понятие предела

В математике принципиально важным является понятие бесконечности, обозначаемое символом ∞ . Его следует понимать как бесконечно большое + ∞ или бесконечно малое - ∞ число. Когда мы говорим о бесконечности, часто мы имеем в виду сразу оба этих ее смысла, однако запись вида + ∞ или - ∞ не стоит заменять просто на ∞ .

Запись предела функции имеет вид lim x → x 0 f (x) . В нижней части мы пишем основной аргумент x , а с помощью стрелочки указываем, к какому именно значению x 0 он будет стремиться. Если значение x 0 является конкретным действительным числом, то мы имеем дело с пределом функции в точке. Если же значение x 0 стремится к бесконечности (не важно, ∞ , + ∞ или - ∞), то следует говорить о пределе функции на бесконечности.

Предел бывает конечным и бесконечным. Если он равен конкретному действительному числу, т.е. lim x → x 0 f (x) = A , то его называют конечным пределом, если же lim x → x 0 f (x) = ∞ , lim x → x 0 f (x) = + ∞ или lim x → x 0 f (x) = - ∞ , то бесконечным.

Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.

В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.

Определение 1

Число A является пределом функции f (x) при x → ∞ , если последовательность ее значений будет сходиться к A для любой бесконечно большой последовательности аргументов (отрицательной или положительной).

Запись предела функции выглядит так: lim x → ∞ f (x) = A .

Определение 2

При x → ∞ предел функции f (x) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).

Запись выглядит как lim x → ∞ f (x) = ∞ .

Пример 1

Докажите равенство lim x → ∞ 1 x 2 = 0 с помощью основного определения предела для x → ∞ .

Решение

Начнем с записи последовательности значений функции 1 x 2 для бесконечно большой положительной последовательности значений аргумента x = 1 , 2 , 3 , . . . , n , . . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 n 2 > . . .

Мы видим, что значения будут постепенно уменьшаться, стремясь к 0 . См. на картинке:

x = - 1 , - 2 , - 3 , . . . , - n , . . .

1 1 > 1 4 > 1 9 > 1 16 > . . . > 1 - n 2 > . . .

Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:

Ответ: Верность данного в условии равенства подтверждена.

Пример 2

Вычислите предел lim x → ∞ e 1 10 x .

Решение

Начнем, как и раньше, с записи последовательностей значений f (x) = e 1 10 x для бесконечно большой положительной последовательности аргументов. Например, x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → + ∞ .

e 1 10 ; e 4 10 ; e 9 10 ; e 16 10 ; e 25 10 ; . . . ; e 100 10 ; . . . = = 1 , 10 ; 1 , 49 ; 2 , 45 ; 4 , 95 ; 12 , 18 ; . . . ; 22026 , 46 ; . . .

Мы видим, что данная последовательность бесконечно положительна, значит, f (x) = lim x → + ∞ e 1 10 x = + ∞

Переходим к записи значений бесконечно большой отрицательной последовательности, например, x = - 1 , - 4 , - 9 , - 16 , - 25 , . . . , - 10 2 , . . . → - ∞ .

e - 1 10 ; e - 4 10 ; e - 9 10 ; e - 16 10 ; e - 25 10 ; . . . ; e - 100 10 ; . . . = = 0 , 90 ; 0 , 67 ; 0 , 40 ; 0 , 20 ; 0 , 08 ; . . . ; 0 , 000045 ; . . . x = 1 , 4 , 9 , 16 , 25 , . . . , 10 2 , . . . → ∞

Поскольку она тоже стремится к нулю, то f (x) = lim x → ∞ 1 e 10 x = 0 .

Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными ­ – отрицательных.

Ответ: lim x → ∞ e 1 10 x = + ∞ , п р и x → + ∞ 0 , п р и x → - ∞ .

Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.

Определение 3

Число B является пределом функции f (x) слева при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются меньше a (x n < a).

Такой предел на письме обозначается как lim x → a - 0 f (x) = B .

Теперь сформулируем, что такое предел функции справа.

Определение 4

Число B является пределом функции f (x) справа при x → a в том случае, когда последовательность ее значений сходится к данному числу при любой последовательности аргументов функции x n , сходящейся к a , если при этом ее значения остаются больше a (x n > a).

Этот предел мы записываем как lim x → a + 0 f (x) = B .

Мы можем найти предел функции f (x) в некоторой точке тогда, когда для нее существуют равные пределы с левой и правой стороны, т.е. lim x → a f (x) = lim x → a - 0 f (x) = lim x → a + 0 f (x) = B . В случае бесконечности обоих пределов предел функции в исходной точке также будет бесконечен.

Теперь мы разъясним данные определения, записав решение конкретной задачи.

Пример 3

Докажите, что существует конечный предел функции f (x) = 1 6 (x - 8) 2 - 8 в точке x 0 = 2 и вычислите его значение.

Решение

Для того чтобы решить задачу, нам потребуется вспомнить определение предела функции в точке. Для начала докажем, что у исходной функции имеется предел слева. Запишем последовательность значений фукнции, которая будет сходиться к x 0 = 2 , если x n < 2:

f (- 2) ; f (0) ; f (1) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 , 667 ; 2 , 667 ; 0 , 167 ; - 0 , 958 ; - 1 , 489 ; - 1 , 747 ; - 1 , 874 ; . . . ; - 1 , 998 ; . . . → - 2

Поскольку приведенная последовательность сводится к - 2 , мы можем записать, что lim x → 2 - 0 1 6 x - 8 2 - 8 = - 2 .

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Значения функции в этой последовательности будут выглядеть так:

f (6) ; f (4) ; f (3) ; f 2 1 2 ; f 2 3 4 ; f 2 7 8 ; f 2 15 16 ; . . . ; f 2 1023 1024 ; . . . = = - 7 , 333 ; - 5 , 333 ; - 3 , 833 ; - 2 , 958 ; - 2 , 489 ; - 2 , 247 ; - 2 , 124 ; . . . , - 2 , 001 , . . . → - 2

Данная последовательность также сходится к - 2 , значит, lim x → 2 + 0 1 6 (x - 8) 2 - 8 = - 2 .

Мы получили, что пределы с правой и левой стороны у данной функции будут равными, значит, предел функции f (x) = 1 6 (x - 8) 2 - 8 в точке x 0 = 2 существует, и lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

Вы можете увидеть ход решения на иллюстрации (зеленые точки– последовательность значений, сходящаяся к x n < 2 , синие – к x n > 2).

Ответ: Пределы с правой и левой стороны у данной функции будут равными, значит, предел функции существует, и lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Доказывая свойства предела функции, мы убедились, что от проколотых окрестностей, в которых были определены наши функции и которые возникали в процессе доказательств, кроме свойств указанных во введении к предыдущему пункту 2, действительно ничего не потребовалось. Это обстоятельство служит оправданием для выделения следующего математического объекта.

а. База; определение и основные примеры

Определение 11. Совокупность В подмножеств множества X будем называть базой в множестве X, если выполнены два условия:

Иными словами, элементы совокупности В суть непустые множества и в пересечении любых двух из них содержится некоторый элемент из той же совокупности.

Укажем некоторые наиболее употребительные в анализе базы.

Если то вместо пишут и говорят, что х стремится к а справа или со стороны больших значений (соответственно, слева или со стороны меньших значений). При принята краткая запись вместо

Запись будет употребляться вместо Она означает, что а; стремится по множеству Е к а, оставаясь больше (меньше), чем а.

то вместо пишут и говорят, что х стремится к плюс бесконечности (соответственно, к минус бесконечности).

Запись будет употребляться вместо

При вместо мы (если это не ведет к недоразумению) будем, как это принято в теории предела последовательности, писать

Заметим, что все перечисленные базы обладают той особенностью, что пересечение любых двух элементов базы само является элементом этой базы, а не только содержит некоторый элемент базы. С другими базами мы встретимся при изучении функций, заданных не на числовой оси.

Отметим также, что используемый здесь термин «база» есть краткое обозначение того, что в математике называется «базисом фильтра», а введенный ниже предел по базе есть наиболее существенная для анализа часть созданного современным французским математиком А. Картаном понятия предела по фильтру

b. Предел функции по базе

Определение 12. Пусть - функция на множестве X; В - база в X. Число называется пределом функции по базе В, если для любой окрестности точки А найдется элемент базы, образ которого содержится в окрестности

Если А - предел функции по базе В, то пишут

Повторим определение предела по базе в логической символике:

Поскольку мы сейчас рассматриваем функции с числовыми значениями, полезно иметь в виду и следующую форму этого основного определения:

В этой формулировке вместо произвольной окрестности V (А) берется симметричная (относительно точки А) окрестность (е-окрестность). Эквивалентность этих определений для вещественнозначных функций вытекает из того, что, как уже говорилось, в любой окрестности точки содержится некоторая симметричная окрестность этой же точки (проведите доказательство полностью!).

Мы дали общее определение предела функции по базе. Выше были рассмотрены примеры наиболее употребительных в анализе баз. В конкретной задаче, где появляется та или иная из этих баз, необходимо уметь расшифровать общее определение и записать его для конкретной базы.

Рассматривая примеры баз, мы, в частности, ввели понятие окрестности бесконечности. Если использовать это понятие, то в соответствии с общим определением предела разумно принять следующие соглашения:

или, что то же самое,

Обычно под подразумевают малую величину. В приведенных определениях это, разумеется, не так. В соответствии с принятыми соглашениями, например, можем записать

Для того чтобы можно было считать доказанными и в общем случае предела по произвольной базе все те теоремы о пределах, которые мы доказали в пункте 2 для специальной базы , необходимо дать соответствующие определения: финально постоянной, финально ограниченной и бесконечно малой при данной базе функций.

Определение 13. Функция называется финально постоянной при базе В, если существуют число и такой элемент базы, в любой точке которого

Определение 14. Функция называется ограниченной при базе В или финально ограниченной при базе В, если существуют число с и такой элемент базы, в любой точке которого

Определение 15. Функция называется бесконечно малой при базе В, если

После этих определений и основного наблюдения о том, что для доказательства теорем о пределах нужны только свойства базы, можно считать, что все свойства предела, установленные в пункте 2, справедливы для пределов по любой базе.

В частности, мы можем теперь говорить о пределе функции при или при или при

Кроме того, мы обеспечили себе возможность применения теории пределов и в том случае, когда функции будут определены не на числовых множествах; в дальнейшем это окажется особенно ценным. К примеру, длина кривой есть числовая функция, определенная на некотором классе кривых. Если мы знаем эту функцию на ломаных, то потом предельным переходом определяем ее для более сложных кривых, например для окружности.

В данный же момент основная польза от сделанного наблюдения и введенного в связи с ним понятия базы состоит в том, что они избавляют нас от проверок и формальных доказательств теорем о пределах для каждого конкретного вида предельных переходов или, в нашей нынешней терминологии, для каждого конкретного вида баз.

Для того чтобы окончательно освоиться с понятием предела по произвольной базе, доказательства дальнейших свойств предела функции мы проведем в общем виде.


Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.