Квадратный корень. Подробная теория с примерами. Корень степени n: основные определения Корень нулевой степени из числа

Для извлечения корня в Excel и возведения числа в степень используются встроенные функции и математические операторы. Рассмотрим на примерах.

Примеры функции КОРЕНЬ в Excel

Встроенная функция КОРЕНЬ возвращает положительное значение квадратного корня. В меню «Функции» она находится в категории «Математические».

Синтаксис функции: =КОРЕНЬ(число).

Единственный и обязательный аргумент представляет собой положительное число, для которого функция вычисляет квадратный корень. Если аргумент имеет отрицательное значение, Excel вернет ошибку #ЧИСЛО!.

В качестве аргумента можно указывать конкретное значение либо ссылку на ячейку с числовым значением.

Рассмотрим примеры.

Функция вернула квадратный корень числа 36. Аргумент – определенное значение.

Функция ABS возвращает абсолютное значение числа -36. Ее использование позволило избежать ошибки при извлечении квадратного корня из отрицательного числа.

Функция извлекла квадратный корень от суммы 13 и значения ячейки C1.



Функция возведения в степень в Excel

Синтаксис функции: =СТЕПЕНЬ(значение; число). Оба аргумента обязательные.

Значение – любое вещественное числовое значение. Число – показатель степени, в которую нужно возвести заданное значение.

Рассмотрим примеры.

В ячейке C2 – результат возведения числа 10 в квадрат.

Функция вернула число 100, возведенное к ¾.

Возведение к степени с помощью оператора

Для возведения числа к степени в Excel, можно воспользоваться математическим оператором «^». Для его введения нажать Shift + 6 (с английской раскладкой клавиатуры).

Чтобы Excel воспринимал вводимую информацию как формулу, сначала ставится знак «=». Далее водится цифра, которую нужно возвести в степень. А после значка «^» – значение степени.

Вместо любого значения данной математической формулы можно использовать ссылки на ячейки с цифрами.

Это удобно, если нужно возвести множество значений.

Скопировав формулу на весь столбец, быстро получили результаты возведения чисел в столбце A в третью степень.

Извлечение корней n-й степени

КОРЕНЬ – это функция квадратного корня в Excel. А как извлекать корень 3-й, 4-й и иной степеней?

Вспомним один из математических законов: чтобы извлечь корень n-й степени, необходимо возвести число в степень 1/n.

Например, чтобы извлечь кубический корень, возводим число в степень 1/3.

Воспользуемся формулой для извлечения корней разных степеней в Excel.

Формула вернула значение кубического корня из числа 21. Для возведения в дробную степень использовали оператор «^».

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Допустим, мы имеем число с показателем степени в виде обыкновенной дроби - a m n . Как записать такое выражение в виде корня?

Ответ вытекает из самого определения степени!

Определение

Положительное число a в степени m n - это корень степени n из числа a m .

При этом, обязательно должно выполнятся условие:

a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

0 m n = 0 m n = 0 .

В соответствии с определением, степень a m n можно представить в виде корня a m n .

Например: 3 2 5 = 3 2 5 , 1 2 3 - 3 4 = 1 2 3 - 3 4 .

Однако, как уже было сказано, не следует забывать про условия: a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Так, выражение - 8 1 3 нельзя представить в виде - 8 1 3 , так как запись - 8 1 3 попросту не имеет смысла - степень отрицательных чисел на определена.При этом, сам корень - 8 1 3 имеет смысл.

Переход от степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее - ОДЗ) исходных выражений в основании степени.

Например, выражение x 2 + 2 x + 1 - 4 1 2 можно представить в виде квадратного корня x 2 + 2 x + 1 - 4 .Выражение в степени x 2 + x · y · z - z 3 - 7 3 переходит в выражение x 2 + x · y · z - z 3 - 7 3 для всех x , y , z из ОДЗ данного выражения.

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

Опять же, переход очевиден для положительных чисел a . Например, 7 6 4 = 7 6 4 , или 2 7 - 5 3 = 2 7 - 5 3 .

Для отрицательных a корни имеют смысл. Например - 4 2 6 , - 2 3 . Однако, представить эти корни в виде степеней - 4 2 6 и - 2 1 3 нельзя.

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

Используя свойства степеней, можно выполнить преобразования выражения - 4 2 6 .

4 2 6 = - 1 2 · 4 2 6 = 4 2 6 .

Так как 4 > 0 , можно записать:

В случае с корнем нечетной степени из отрицательного числа, можно записать:

A 2 m + 1 = - a 2 m + 1 .

Тогда выражение - 2 3 примет вид:

2 3 = - 2 3 = - 2 1 3 .

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.

Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением A m n в виде A m n . Поясним, что здесь имеется в виду. Например, выражение х - 3 2 3 , основываясь на равенстве из первого пункта, хочется представить в виде x - 3 2 3 . Такая замена возможна только при x - 3 ≥ 0 , а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула a m n = a m n не имеет смысла.

Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.

Чтобы правильно перейти от корня A m n к степени A m n , необходимо соблюдать несколько пунктов:

  • В случае, если число m - целое и нечетное, а n - натуральное и четное, то формула A m n = A m n справедлива на всей ОДЗ переменных.
  • Если m - целое и нечетное, а n - натуральное и нечетное,то выражение A m n можно заменить:
    - на A m n для всех значений переменных, при которых A ≥ 0 ;
    - на - - A m n для для всех значений переменных, при которых A < 0 ;
  • Если m - целое и четное, а n - любое натуральное число, то A m n можно заменить на A m n .

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Вернемся к выражению х - 3 2 3 . Здесь m = 2 - целое и четное число, а n = 3 - натуральное число. Значит, выражение х - 3 2 3 правильно будет записать в виде:

х - 3 2 3 = x - 3 2 3 .

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

x + 5 - 3 5 = x + 5 - 3 5 , x > - 5 - - x - 5 - 3 5 , x < - 5

Обоснуем результаты, приведенные в таблице. Если число m - целое и нечетное, а n - натуральное и четное, для всех переменных из ОДЗ в выражении A m n значение A положительно или неотрицательно (при m > 0). Именно поэтому A m n = A m n .

Во втором варианте, когда m - целое, положительное и нечетное, а n - натуральное и нечетное, значения A m n разделяются. Для переменных из ОДЗ, при которых A неотрицательно, A m n = A m n = A m n . Для переменных, при которых A отрицательно, получаем A m n = - A m n = - 1 m · A m n = - A m n = - A m n = - A m n .

Аналогично рассмотрим и следующий случай, когда m - целое и четное, а n - любое натуральное число. Если значение A положительно или неотрицательно, то для таких значений переменных из ОДЗ A m n = A m n = A m n . Для отрицательных A получаем A m n = - A m n = - 1 m · A m n = A m n = A m n .

Таким образом, в третьем случае для всех переменных из ОДЗ можно записать A m n = A m n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

Минуууточку. это, а это значит, что мы можем записать вот так:

Усвоил? Вот тебе следующий:

Корни из получившихся чисел ровно не извлекаются? Не беда - вот тебе такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Теперь полностью самостоятельно:

Ответы: Молодец! Согласись, все очень легко, главное знать таблицу умножения!

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

Вот и вся наука. А вот такой пример:

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

Надо просто применить формулу в обратном направлении:

А вот такой примерчик:

Еще ты можешь встретить такое выражение:

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему и возвращайся!). Вспомнил? Теперь решаем!

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа - это число, квадратный корень которого равен.

Так вот, если мы возводим число, квадратный корень которого равен, в квадрат, то что получаем?

Ну, конечно, !

Рассмотрим на примерах:

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Почитай теорию по теме « » и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

Ну как, все понятно? Тогда реши самостоятельно примеры:

А вот и ответы:

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко!

Допустим, у нас записано число

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка - корень квадратный из!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример -
Справился? Давай смотреть, что у тебя должно получиться:

Молодец! У тебя получилось внести число под знак корня! Перейдем к не менее важному - рассмотрим, как сравнивать числа, содержащие квадратный корень!

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше: или?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

Т.е. если, значит, .

Отсюда твердо делаем вывод, что. И никто не убедит нас в обратном!

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Разве это конец? Не останавливаемся на полпути!

Вот и все, не так все и страшно, правда?

Получилось? Молодец, все верно!

А теперь попробуй вот такой пример решить:

А пример-то - крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Ну что, начнем раскладывать на множители? Сразу заметим, что можно поделить число на (вспоминаем признаки делимости):

А теперь, попробуй сам (опять же, без калькулятора!):

Ну что, получилось? Молодец, все верно!

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен.
    .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
  3. Свойства арифметического корня:
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

Как тебе квадратный корень? Все понятно?

Мы постарались объяснить тебе без воды все что нужно знать на экзамене про квадратный корень.

Теперь твоя очередь. Напиши нам сложная это для тебя тема или нет.

Узнал ты что-то новое или все было и так ясно.

Пиши в комментариях и удачи на экзаменах!

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются .

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc … ) n = a n · b n · c n

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

(a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы. 2 0 = 1, (5) 0 = 1, (3 / 5) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений. любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.


0 0 - любое число.

Действительно,


Р е ш е н и е. Рассмотрим три основных случая:

1) x = 0 это значение не удовлетворяет данному уравнению

(Почему?).

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

Нашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

В этом случае нет решения.

Таким образом, x > 0.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .